If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x^2+4x+0.5=0
a = 0.5; b = 4; c = +0.5;
Δ = b2-4ac
Δ = 42-4·0.5·0.5
Δ = 15
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-\sqrt{15}}{2*0.5}=\frac{-4-\sqrt{15}}{1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+\sqrt{15}}{2*0.5}=\frac{-4+\sqrt{15}}{1} $
| 5p+10=3p-7 | | 2(3)-11y=-7 | | 2^x=30000000000000 | | 8/5y=32 | | 3k-4k+7=4 | | x+0.15x=4800 | | 8x^2+16x-46=-4 | | 1/5-k=0.5 | | 2k/(20k-28)=4 | | 1=n2+2n+3 | | 1/4(12x-8)+5x=14 | | 1=n2+2n+ | | 2x+54=4x-9 | | T1=n2+2n+3 | | 5^x-10=34 | | 18=p/7 | | 40+110x+30=180 | | 40+110+30x=180 | | 40=26.50+m | | -6x+5=-4x+5 | | z^2=-27 | | 22r=396 | | 4x3=5x+21 | | 8.75-c=10 | | u-58=23 | | 108+x+90+90=360 | | t+8=91 | | 5(x+2)^(3)=525 | | -14x-8=92 | | y=160-9 | | 8t-45=0 | | k-36=11 |